ubuntu22.04
python3.8
YY3588开发板
# 下载rknn-llm
git clone https://github.com/airockchip/rknn-llm.git
# 安装 miniforge3 和 conda
wget -c https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-Linux-x86_64.sh
chmod 777 Miniforge3-Linux-x86_64.sh
./Miniforge3-Linux-x86_64.sh
## 确认是否安装成功
conda -V
source ~/miniforge3/bin/activate
conda create -n RKLLM-Toolkit python=3.8
conda activate RKLLM-Toolkit
pip3 install rkllm-toolkit/packages/rkllm_toolkit-1.1.4-cp38-cp38-linux_x86_64.whl
# 检查是否安装成功(无报错则安装成功)
python
下载地址:DeepSeek-R1-Distill-Qwen-1.5B
cd examples/DeepSeek-R1-Distill-Qwen-1.5B_Demo/export/
python export_rkllm.py
转换之后的模型为:DeepSeek-R1-Distill-Qwen-1.5B.rkllm
# 修改编译器路径
vim examples/DeepSeek-R1-Distill-Qwen-1.5B_Demo/deploy/build-linux.sh
cd examples/DeepSeek-R1-Distill-Qwen-1.5B_Demo/deploy/
bash build-linux.sh
rknn-llm/examples/DeepSeek-R1-Distill-Qwen-1.5B_Demo/deploy/install/demo_Linux_aarch64$ ls
lib llm_demo
将库、demo和转换模型推送到板端
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:./lib
export RKLLM_LOG_LEVEL=1
./llm_demo DeepSeek-R1-Distill-Qwen-1.5B.rkllm 10000 10000
// TO DO LINK